Chebyshev Series Expansion of Inverse Polynomials

نویسنده

  • RICHARD J. MATHAR
چکیده

if the polynomial has no roots in [−1, 1]. If the inverse polynomial is decomposed into partial fractions, the an are linear combinations of simple functions of the polynomial roots. If the first k of the coefficients an are known, the others become linear combinations of these with expansion coefficients derived recursively from the bj ’s. On a closely related theme, finding a polynomial with minimum relative error towards a given f(x) is approximately equivalent to finding the bj in f(x)/ ∑k 0 bjTj(x) = 1 + ∑ ∞ k+1 anTn(x), and may be handled with a Newton method providing the Chebyshev expansion of f(x) is known.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Chebyshev Polynomials for Solving Abel's Integral Equations of the First and Second Kind

In this paper, a numerical implementation of an expansion method is developed for solving Abel's integral equations of the first and second kind. The solution of such equations may demonstrate a singular behaviour in the neighbourhood of the initial point of the interval ofintegration. The suggested method is based on the use of Taylor series expansion to overcome the singularity which le...

متن کامل

A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems

In this paper‎, two inverse problems of determining an unknown source term in a parabolic‎ equation are considered‎. ‎First‎, ‎the unknown source term is ‎estimated in the form of a combination of Chebyshev functions‎. ‎Then‎, ‎a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem‎. ‎For solving the problem‎, ‎the operational matrices of int...

متن کامل

A fast FFT-based discrete Legendre transform

An O(N(logN)2/ loglogN) algorithm for computing the discrete Legendre transform and its inverse is described. The algorithm combines a recently developed fast transform for converting between Legendre and Chebyshev coefficients with a Taylor series expansion for Chebyshev polynomials about equallyspaced points in the frequency domain. Both components are based on the FFT, and as an intermediate...

متن کامل

The coefficients of differentiated expansions of double and triple Jacobi polynomials

Formulae expressing explicitly the coefficients of an expansion of double Jacobi polynomials which has been partially differentiated an arbitrary number of times with respect to its variables in terms of the coefficients of the original expansion are stated and proved. Extension to expansion of triple Jacobi polynomials is given. The results for the special cases of double and triple ultraspher...

متن کامل

On closed form calculation of line spectral frequencies (LSF)

The mathematical theory of closed form functions for calculating LSFs on the basis of generating functions is presented. Exploiting recurrence relationships in the series expansion of Chebyshev polynomials of the first kind makes it possible to bootstrap iterative LSF-search from a set of characteristic polynomial zeros. The theoretical analysis is based on decomposition of sequences into symme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004